A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem
نویسندگان
چکیده
منابع مشابه
Nonconforming finite element approximations of the Steklov eigenvalue problem
Article history: Received 27 November 2008 Received in revised form 27 March 2009 Accepted 22 April 2009 Available online 3 May 2009 MSC: 65N25 65N30 65N15
متن کاملA Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods
In this paper, a multilevel correction scheme is proposed to solve the Steklov eigenvalue problem by nonconforming finite element methods. With this new scheme, the accuracy of eigenpair approximations can be improved after each correction step which only needs to solve a source problem on finer finite element space and an Steklov eigenvalue problem on the coarsest finite element space. This co...
متن کاملA Nonconforming Generalized Finite Element Method for Transmission Problems
We obtain “quasi-optimal rates of convergence” for transmission (interface) problems on domains with smooth, curved boundaries using a non-conforming Generalized Finite Element Method (GFEM). More precisely, we study the strongly elliptic problem Pu := − ∑ ∂j(A ∂iu) = f in a smooth bounded domain Ω with Dirichlet boundary conditions. The coefficients Aij are piecewise smooth, possibly with jump...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملAdaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters
This paper analyses an adaptive nonconforming finite element method for eigenvalue clusters of self-adjoint operators and proves optimal convergence rates (with respect to the concept of nonlinear approximation classes) for the approximation of the invariant subspace spanned by the eigenfunctions of the eigenvalue cluster. Applications include eigenvalues of the Laplacian and of the Stokes system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2020
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-020-01247-4